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Abstract In this paper, new Coupled Fractional Reduced Differential Transform has
been implemented to obtain the soliton solutions of coupled time fractional modified
KdV equations. This new method has been revealed by the author. The fractional
derivatives are described in the Caputo sense. By using the present method, we can
solve many linear and nonlinear coupled fractional differential equations. The results
reveal that the proposed method is very effective and simple for obtaining approxi-
mate solutions of fractional coupled modified KdV equations. Numerical solutions are
presented graphically to show the reliability and efficiency of the method. Solutions
obtained by this new method have been also compared with Adomian decomposition
method (ADM).

Keywords Coupled fractional reduced differential transform · Adomian decom-
position method · Fractional coupled modified KdV equations · Caputo fractional
derivative · Riemann–Liouville fractional derivative

1 Introduction

In the field of engineering, physics, other field of applied sciences many phenomena
can be obtained very successfully by models using mathematical tools form of frac-
tional calculus [1–8]. In the past decades, the fractional differential equations have
been widely used in various fields of applied science and engineering. Many impor-
tant phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, con-
trol theory, neutron point kinetic model, anomalous diffusion, vibration and control,
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continuous time random walk, Levy Statistics, Brownian motion, signal and image
processing, relaxation, creep, chaos, fluid dynamics and material science are well
described by differential equations of fractional order. Fractional calculus has been
used to model physical and engineering processes that are found to be best described
by fractional differential equations. For that reason, we need a reliable and efficient
technique for the solution of fractional differential equations. An immense effort has
been expended over the last many years to find robust and efficient numerical and
analytical methods for solving such fractional differential equations. In the present
analysis, a new approximate numerical technique, Coupled Fractional Reduced Dif-
ferential transform method (CFRDTM), has been applied which is applicable for
coupled fractional differential equations. The new method is a very powerful solver
for linear and non-linear coupled fractional differential equations. It is relatively a new
approach to provide the solution very efficiently and accurately.

In this paper, coupled modified KdV equations [9,10], of time fractional order,
have been considered. The paper is organized as follows: in Sect. 2, a brief review
of the theory of fractional calculus has been provided for the precise purpose of this
paper. In Sect. 3, the Coupled Fractional Reduced Differential Transform method has
been analyzed in details. In Sect. 4, CFRDTM has been applied to determine the
approximate solutions for the coupled time fractional modified KdV equations. The
obtained results show the efficiency and simplicity of the proposed method. Finally,
conclusions are presented.

2 Brief description of fractional calculus

The fractional calculus was first anticipated by Leibnitz, was one of the founders of
standard calculus, in a letter written in 1695. This calculus involves different definitions
of the fractional operators as well as the Riemann–Liouville fractional derivative,
Caputo derivative, Riesz derivative and Grunwald–Letnikov fractional derivative [1].
The fractional calculus has gained considerable importance during the past decades
mainly due to its applications in diverse fields of science and engineering. For the
purpose of this paper the Caputo’s definition of fractional derivative will be used,
taking the advantage of Caputo’s approach that the initial conditions for fractional
differential equations with Caputo’s derivatives take on the traditional form as for
integer-order differential equations.

2.1 Definition-Riemann–Liouville integral

The most frequently encountered definition of an integral of fractional order is the
Riemann–Liouville integral [1], in which the fractional integral of order α(> 0) is
defined as

Jα f (t) = 1

�(α)

t∫

0

(t − τ)α−1 f (τ )dτ , t > 0, α ∈ R+ (2.1)

where R+ is the set of positive real numbers.
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2.2 Definition-Caputo fractional derivative

The fractional derivative, introduced by Caputo [11,12] in the late sixties, is called
Caputo Fractional Derivative. The fractional derivative of f (t) in the Caputo sense is
defined by

Dα
t f (t) = J m−α Dm f (t) =

{
1

�(m−α)

∫ t
0 (t − τ)(m−α−1) dm f (τ )

dτm dτ , i f m − 1 < α < m, m ∈ N
dm f (t)

dtm , i f α = m, m ∈ N

(2.2)

where the parameter α is the order of the derivative and is allowed to be real or even
complex. In this paper only real and positive α will be considered.

For the Caputo’s derivative we have

DαC = 0, (C is a constant) (2.3)

Dαtβ =
{

0, β ≤ α − 1
�(β+1)tβ−α

�(β−α+1)
, β > α − 1

(2.4)

Similar to integer order differentiation Caputo’s derivative is linear.

Dα(γ f (t) + δg(t)) = γ Dα f (t) + δDαg(t) (2.5)

where γ and δ are constants, and satisfies so called Leibnitz’s rule.

Dα(g(t) f (t)) =
∞∑

k=0

(
α

k

)
g(k)(t)Dα−k f (t) (2.6)

If f (τ ) is continuous in [0, t] and g(τ ) has n + 1 continuous derivatives in [0, t].

2.3 Lemma

If m − 1 < α < m, m ∈ N, then

Dα Jα f (t) = f (t) (2.7)

and

Jα Dα f (t) = f (t) −
m−1∑
k=0

tk

k! f (k)(0+), t > 0 (2.8)
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2.4 Theorem

(Generalized Taylor’s formula) [13] Suppose that Dkα
a f (t) ∈ C(a, b] for k =

0, 1, . . . , n + 1, where 0 < α ≤ 1, we have

f (t) =
n∑

i=0

(t − a)iα

�(iα + 1)

[
Dkα

a f (t)
]

t=a
+ �α

n (t; a) (2.9)

with �α
n (t; a) = (t−a)(n+1)α

�((n+1)α+1)

[
D(n+1)α

a f (t)
]

t=ξ
, a ≤ ξ ≤ t,∀t ∈ (a, b], where

Dkα
a = Dα

a .Dα
a .Dα

a · · · Dα
a (k times).

3 Coupled fractional reduced differential transform method (CFRDTM)

In order to introduce coupled fractional reduced differential transform, U (h, k − h)

is considered as the coupled fractional reduced differential transform of u(x, t). If
function u(x, t) is analytic and differentiated continuously with respect to time t , then
we define the fractional coupled reduced differential transform of u(x, t) as

U (h, k − h) = 1

�(hα + (k − h)β + 1)

[
D(hα+(k−h)β)

t u(x, t)
]

t=0
(3.1)

whereas the inverse transform of U (h, k − h) is

u(x, t) =
∞∑

k=0

k∑
h=0

U (h, k − h)thα+(k−h)β (3.2)

which is one of the solution of coupled fractional differential equations.

Theorem 1 Suppose that U (h, k − h), V (h, k − h) and W (h, k − h) are the Cou-
pled Fractional Reduced Differential Transform of the functions u(x, t), v(x, t) and
w(x, t), respectively.

i If u(x, t) = f (x, t) ± g(x, t) then U (h, k − h) = F(h, k − h) ± G(h, k − h).
ii If u(x, t) = a f (x, t), where a ∈ R, then U (h, k − h) = aF(h, k − h).

iii If f (x, t) = u(x, t)v(x, t), then F(h, k − h) = ∑h
l=0

∑k−h
s=0 U (h − l, s)

V (l, k − h − s).
iv If f (x, t) = Dα

t u(x, t), then

F(h, k − h) = �((h + 1)α + (k − h)β + 1)

�(hα + (k − h)β + 1)
U (h + 1, k − h).

v If f (x, t) = Dβ
t v(x, t), then

F(h, k − h) = �(hα + (k − h + 1)β + 1)

�(hα + (k − h)β + 1)
V (h, k − h + 1).
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4 Soliton solutions for time fractional coupled modified KdV equations

Example 4.1 Consider the following time fractional coupled modified KdV equations
[10]

Dα
t u = 1

2

∂3u

∂x3 − 3u2 ∂u

∂x
+ 3

2

∂2v

∂x2 + 3
∂(uv)

∂x
− 3

∂u

∂x
(4.1a)

Dβ
t v = −∂3v

∂x3 − 3v
∂v

∂x
− 3

∂u

∂x

∂v

∂x
+ 3u2 ∂v

∂x
+ 3

∂v

∂x
(4.1b)

where t > 0, 0 < α, β ≤ 1,
subject to the initial conditions

u(x, 0) = 1

2
+ tanh(x) (4.1c)

v(x, 0) = 1 + tanh(x) (4.1d)

The exact solutions of Eqs. (4.1a) and (4.1b), for the special case where α = β = 1,
are given by

u(x, t) = 1

2
+ tanh(x + ct) (4.2a)

v(x, t) = 1 + tanh(x + ct) (4.2b)

In order to assess the advantages and the accuracy of the CFRDTM for solving time
fractional coupled modified KdV equations. Firstly, we derive the recursive formula
from Eqs. (4.1a), (4.1b). Now, U (h, k − h) and V (h, k − h) are considered as the
coupled fractional reduced differential transform of u(x, t) and v(x, t), respectively,
where u(x, t) and v(x, t) are the solutions of coupled fractional differential equations.
Here, U (0, 0) = u(x, 0), V (0, 0) = v(x, 0) are the given initial conditions. Without
loss of generality, the following assumptions have taken

U (0, j) = 0, j = 1, 2, 3, · · · and V (i, 0) = 0, i = 1, 2, 3, · · ·

Applying CFRDTM to Eq. (4.1a), we obtain the following recursive formula

�((h + 1)α + (k − h)β + 1)

�(hα + (k − h)β + 1)
U (h + 1, k − h)

= 1

2

∂3

∂x3 U (h, k − h) + 3

2

∂2

∂x2 V (h, k − h) − 3
∂

∂x
U (h, k − h)

+3
∂

∂x

(
h∑

l=0

k−h∑
s=0

U (h − l, s)V (l, k − h − s)

)

−3

⎛
⎝ h∑

r=0

h−r∑
l=0

k−h∑
s=0

k−h−s∑
p=0

U (r, k − h − s − p)U (l, s)
∂

∂x
U (h − r − l, p)

⎞
⎠

(4.3)
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From the initial condition of Eq. (4.1c), we have

U (0, 0) = u(x, 0) (4.4)

In the same manner, we can obtain the following recursive formula from Eq. (4.1b)

�(hα + (k − h + 1)β + 1)

�(hα + (k − h)β + 1)
V (h, k − h + 1)

= − ∂3

∂x3 V (h, k − h) + 3
∂

∂x
V (h, k − h)

−3

(
h∑

l=0

k−h∑
s=0

∂

∂x
U (l, k − h − s)

∂

∂x
V (h − l, s)

)

−3

(
h∑

l=0

k−h∑
s=0

V (l, k − h − s)
∂

∂x
V (h − l, s)

)

+3

⎛
⎝ h∑

r=0

h−r∑
l=0

k−h∑
s=0

k−h−s∑
p=0

U (r, k − h − s − p)U (l, s)
∂

∂x
U (h − r − l, p)

⎞
⎠

(4.5)

From the initial condition of Eq. (4.1d), we have

V (0, 0) = v(x, 0) (4.6)

According to CFRDTM, using recursive Eq. (4.3) with initial condition Eq. (4.4)
and also using recursive scheme Eq. (4.5) with initial condition Eq. (4.6) simultane-
ously, we obtain

U (1, 0) = − sech2(x)

4�(1 + α)

V (0, 1) = − sech2(x)

4�(1 + β)

U (1, 1) = 3 sech2(x) tanh(x)

4�(1 + α + β)

V (0, 2) = sech5(x)(9 cosh(x) − 3 cosh(3x) + 32 sinh(x) − 4 sinh(3x))

8�(1 + 2β)

U (2, 0) = −7 sech2(x) tanh(x)

8�(1 + 2α)

V (1, 1) = 3 sech5(x)(−12 cosh(x) + 4 cosh(3x) − 43 sinh(x) + 5 sinh(3x))

32�(1 + α + β)

and so on.
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The approximate solutions, obtained in the series form, are given by

u(x, t) =
∞∑

k=0

k∑
h=0

U (h, k − h)t (hα+(k−h)β)

= U (0, 0) +
∞∑

k=1

k∑
h=1

U (h, k − h)t (hα+(k−h)β)

= 1

2
+ tanh(x) − tα sech2(x)

4�(1 + α)
− 7t2α sech2(x) tanh(x)

8�(1 + 2α)

+3tα+β sech2(x) tanh(x)

4�(1 + α + β)
+ · · · (4.7)

v(x, t) =
∞∑

k=0

k∑
h=0

V (h, k − h)t (hα+(k−h)β)

= V (0, 0) +
∞∑

k=1

k∑
h=0

V (h, k − h)t (hα+(k−h)β)

= 1 + tanh(x) − tβ sech2(x)

4�(1 + β)

+ t2β sech5(x)(9 cosh(x) − 3 cosh(3x) + 32 sinh(x) − 4 sinh(3x))

8�(1 + 2β)

+3tα+β sech5(x)(−12 cosh(x) + 4 cosh(3x) − 43 sinh(x) + 5 sinh(3x))

32�(1 + α + β)
+ · · ·

(4.8)

When α = 1 and β = 1, the solution in Eq. (4.7) becomes

u(x, t) = 1

2
+ tanh(x) − t sech2(x)

4
− t2 sech2(x) tanh(x)

16

− t3 sech4(x)(−2 + cosh(2x))

192
+ · · · (4.9)

When α = 1 and β = 1, the solution in Eq. (4.8) becomes

v(x, t) = 1 + tanh(x) − t sech2(x)

4
− t2 sech2(x) tanh(x)

16

− t3 sech4(x)(−2 + cosh(2x))

192
+ · · · (4.10)

The solutions in Eqs. (4.9) and (4.10) are exactly same as the Taylor series expan-
sions of the exact solutions

u(x, t) = 1

2
+ tanh

(
x − t

4

)

= 1

2
+ tanh(x) − t sech2(x)

4
− t2 sech2(x) tanh(x)

16
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− t3 sech4(x)(−2 + cosh(2x))

192
+ · · · (4.11)

v(x, t) = 1 + tanh

(
x − t

4

)

= 1 + tanh(x) − t sech2(x)

4
− t2 sech2(x) tanh(x)

16

− t3 sech4(x)(−2 + cosh(2x))

192
+ · · · (4.12)

In order to explore the efficiency and accuracy of the proposed method for the time
fractional coupled modified KdV equations, the graphs have been drawn in Fig. 1a–d.
The numerical solutions for Eqs. (4.9) and (4.10) for the special case where α = 1
and β = 1 are shown in Fig. 1a, b. It can be observed from Fig. 1a–d that the solutions
obtained by the proposed method coincide with the exact solution. In this case, we see
that the soliton solutions are kink-types for both u(x, t) and v(x, t).

Example 4.2 Consider the following time fractional coupled modified KdV equations
[9]

Dα
t u = 1

2

∂3u

∂x3 − 3u2 ∂u

∂x
+ 3

2

∂2v

∂x2 + 3
∂(uv)

∂x
+ 3

∂u

∂x
(4.13a)

Fig. 1 The surfaces show a the numerical approximate solution of u(x, t), b the numerical approximate
solution of v(x, t), c the exact solution of u(x, t), and d the exact solution of v(x, t) when α = 1 and β = 1
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Dβ
t v = −∂3v

∂x3 − 3v
∂v

∂x
− 3

∂u

∂x

∂v

∂x
+ 3u2 ∂v

∂x
− 3

∂v

∂x
(4.13b)

where t > 0, 0 < α, β ≤ 1,
subject to the initial conditions

u(x, 0) = tanh(x) (4.13c)

v(x, 0) = 1 − 2 tanh2(x) (4.13d)

The exact solutions of Eqs. (4.13a) and (4.13b) obtained by Adomian decomposition
method, for the special case where α = β = 1, are given by

u(x, t) = tanh(x − t) (4.14a)

v(x, t) = 1 − 2 tanh2(x − t) (4.14b)

In order to assess the advantages and the accuracy of the CFRDTM for solving time
fractional coupled modified KdV equations. Firstly, we derive the recursive formula
from Eqs. (4.13a), (4.13b). Now, U (h, k − h) and V (h, k − h) are considered as the
coupled fractional reduced differential transform of u(x, t) and v(x, t), respectively,
where u(x, t) and v(x, t) are the solutions of coupled fractional differential equations.
Here, U (0, 0) = u(x, 0), V (0, 0) = v(x, 0) are the given initial conditions. Without
loss of generality, the following assumptions have taken

U (0, j) = 0, j = 1, 2, 3, · · · and V (i, 0) = 0, i = 1, 2, 3, · · · .

Applying CFRDTM to Eq. (4.13a), we obtain the following recursive formula

�((h + 1)α + (k − h)β + 1)

�(hα + (k − h)β + 1)
U (h + 1, k − h)

= 1

2

∂3

∂x3 U (h, k − h) + 3

2

∂2

∂x2 V (h, k − h)

+3
∂

∂x
U (h, k − h) + 3

∂

∂x

(
h∑

l=0

k−h∑
s=0

U (h − l, s)V (l, k − h − s)

)

−3

⎛
⎝ h∑

r=0

h−r∑
l=0

k−h∑
s=0

k−h−s∑
p=0

U (r, k − h − s − p)U (l, s)
∂

∂x
U (h − r − l, p)

⎞
⎠

(4.15)

From the initial condition of Eq. (4.13c), we have

U (0, 0) = u(x, 0) (4.16)
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In the same manner, we can obtain the following recursive formula from Eq. (4.13b)

�(hα + (k − h + 1)β + 1)

�(hα + (k − h)β + 1)
V (h, k − h + 1)

= − ∂3

∂x3 V (h, k − h) − 3
∂

∂x
V (h, k − h)

−3

(
h∑

l=0

k−h∑
s=0

∂

∂x
U (l, k − h − s)

∂

∂x
V (h − l, s)

)

−3

(
h∑

l=0

k−h∑
s=0

V (l, k − h − s)
∂

∂x
V (h − l, s)

)

+3

⎛
⎝ h∑

r=0

h−r∑
l=0

k−h∑
s=0

k−h−s∑
p=0

U (r, k − h − s − p)U (l, s)
∂

∂x
U (h − r − l, p)

⎞
⎠

(4.17)

From the initial condition of Eq. (4.13d), we have

V (0, 0) = v(x, 0) (4.18)

According to CFRDTM, using recursive Eq. (4.15) with initial condition Eq. (4.16)
and also using recursive scheme Eq. (4.17) with initial condition Eq. (4.18) simulta-
neously, we obtain

U (1, 0) = − sech2(x)

�(1 + α)

V (0, 1) = 4 sech2(x) tanh(x)

�(1 + β)

U (1, 1) = −24 sech4(x) tanh(x)

�(1 + α + β)

V (0, 2) = sech6(x)(21 − 26 cosh(2x) + cosh(4x))

�(1 + 2β)

U (2, 0) = − (−23 + cosh(2x)) sech4(x) tanh(x)

�(1 + 2α)

V (1, 1) = 48 sech4(x) tanh2(x)

�(1 + α + β)

and so on.
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The approximate solutions, obtained in the series form, are given by

u(x, t) =
∞∑

k=0

k∑
h=0

U (h, k − h)t (hα+(k−h)β)

= U (0, 0) +
∞∑

k=1

k∑
h=1

U (h, k − h)t (hα+(k−h)β)

= tanh(x) − tα sech2(x)

�(1 + α)
− t2α(−23 + cosh(2x)) sech4(x) tanh(x)

�(1 + 2α)

−24tα+β sech4(x) tanh(x)

�(1 + α + β)
+ · · · (4.19)

v(x, t) =
∞∑

k=0

k∑
h=0

V (h, k − h)t (hα+(k−h)β)

= V (0, 0) +
∞∑

k=1

k∑
h=0

V (h, k − h)t (hα+(k−h)β)

= 1 − 2 tanh2(x) + 4tβ sech2(x) tanh(x)

�(1 + β)

+ t2β sech6(x)(21 − 26 cosh(2x) + cosh(4x))

�(1 + 2β)

+48tα+β sech4(x) tanh2(x)

�(1 + α + β)
+ · · · (4.20)

When α = 1 and β = 1, the solution in Eq. (4.19) becomes

u(x, t) = tanh(x) − t sech2(x) − t2 sech2(x) tanh(x)

− t3 sech4(x)(−2 + cosh(2x))

3
+ · · · (4.21)

When α = 1 and β = 1, the solution in Eq. (4.20) becomes

v(x, t) = 1 − 2 tanh2(x) + 4t sech2(x) tanh(x) + 2t2 sech4(x)(−2 + cosh(2x))

+2t3 sech5(x)(−11 sinh(x) + sinh(3x))

3
+ · · · (4.22)

The solutions in Eqs. (4.21) and (4.22) are exactly same as the Taylor series expan-
sions of the exact solutions

u(x, t) = tanh (x − t)

= tanh(x) − t sech2(x) − t2 sech2(x) tanh(x)

− t3 sech4(x)(−2 + cosh(2x))

3
+ · · · (4.23)
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Fig. 2 The surfaces show a the numerical approximate solution of u(x, t), b the numerical approximate
solution of v(x, t), c the exact solution of u(x, t), and d the exact solution of v(x, t) when α = 1 and β = 1

v(x, t) = 1 − 2 tanh2(x − t)

= 1 − 2 tanh2(x) + 4t sech2(x) tanh(x) + 2t2 sech4(x)(−2 + cosh(2x)

+2t3 sech5(x)(−11 sinh(x) + sinh(3x))

3
+ · · · (4.24)

Again, in order to verify the efficiency and reliability of the proposed method for
the time fractional coupled modified KdV equations, the graphs have been drawn in
Fig. 2a–d. The numerical solutions for Eqs. (4.21) and (4.22) for the special case where
α = 1 and β = 1 are shown in Fig. 2a–d. It can be observed from Fig. 2a–d that the
soliton solutions obtained by the proposed method are exactly identical with the exact
solutions. In this case, we see that the soliton solutions are kink-type for u(x, t) and
bell-type for v(x, t).

5 Verification of classical integer order solutions by ADM

In case of α = 1 and β = 1, to solve Eqs. (4.13a) and (4.13b) by means of Adomian
decomposition method (ADM), we rewrite the Eqs. (4.13a) and (4.13b) in an operator
form
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Lt u = 1

2

∂3u

∂x3 − 3A(u) + 3

2

∂2v

∂x2 + 3B(u, v) + 3
∂u

∂x
(5.1)

Ltv = −∂3v

∂x3 − 3C(v) − 3G(u, v) + 3H(u, v) − 3
∂v

∂x
(5.2)

where Lt ≡ ∂
∂t is the easily invertible linear differential operator with its inverse oper-

ator L−1
t (.) ≡ ∫ t

0 (.)dτ . Here, the functions A(u) = u2 ∂u
∂x , B(u, v) = ∂(uv)

∂x , C(v) =
v ∂v

∂x , G(u, v) = ∂u
∂x

∂v
∂x and H(u, v) = u2 ∂v

∂x are related to the nonlinear terms and they
can be expressed in terms of the Adomian polynomials as follows

A(u) = ∑∞
n=0 An, B(u, v) = ∑∞

n=0 Bn, C(v) = ∑∞
n=0 Cn, G(u, v) =∑∞

n=0 Gn and H(u, v) = ∑∞
n=0 Hn . In particular, for nonlinear operator A(u) and

B(u, v), the Adomian polynomials are defined by

An = 1

n!
dn

dλn

[
A

( ∞∑
k=0

λkuk

)]∣∣∣∣∣
λ=0

, n ≥ 0,

Bn = 1

n!
dn

dλn

[
B

( ∞∑
k=0

λkuk,

∞∑
k=0

λkvk

)]∣∣∣∣∣
λ=0

, n ≥ 0,

The first few components of A(u), B(u, v), C(v), G(u, v) and H(u, v) are respec-
tively given by

A0 = u2
0u0x

A1 = u2
0u1x + 2u0u1u0x

A2 = u0x (2u0u2 + u2
1) + u2

0u2x + 2u0u1u1x

. . .

B0 = u0v0x + v0u0x

B1 = u0v1x + v1u0x + u1v0x + v0u1x

B2 = u0v2x + v2u0x + u1v1x + v1u1x + u2v0x + v0u2x

. . .

C0 = v0v0x

C1 = v0v1x + v1v0x

C2 = v1v1x + v0v2x + v2v0x

. . .

G0 = u0x v0x

G1 = u0x v1x + v0x u1x

G2 = u1x v1x + v0x u2x + u0x v2x

. . .

H0 = u2
0v0x

H1 = u2
0v1x + 2u0u1v0x
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H2 = v0x (2u0u2 + u2
1) + u2

0v2x + 2u0u1v1x

. . .

and so on, the rest of the polynomials can be constructed in a similar manner.
Now, operating with L−1

t on the both sides of Eqs. (5.1) and (5.2), yields

u(x, t) = u(x, 0) + L−1
t

(
1

2

∂3u

∂x3 − 3A(u) + 3

2

∂2v

∂x2 + 3B(u, v) + 3
∂u

∂x

)
(5.3)

v(x, t) = v(x, 0) + L−1
t

(
−∂3v

∂x3 − 3C(v) − 3G(u, v) + 3H(u, v) − 3
∂v

∂x

)

(5.4)

The ADM assumes that the two unknown functions u(x, t) and v(x, t) can be
expressed by infinite series in the following forms

u(x, t) =
∞∑

n=0

un(x, t) (5.5)

v(x, t) =
∞∑

n=0

vn(x, t) (5.6)

Substituting Eqs. (5.5) and (5.6) into Eqs. (5.3) and (5.4) yields

u0(x, t) = u(x, 0)

un+1(x, t) = L−1
t

(
1

2

∂3un(x, t)

∂x3 − 3An + 3

2

∂2vn(x, t)

∂x2 + 3Bn + 3
∂un(x, t)

∂x

)
, n ≥ 0,

(5.7)
v0(x, t) = v(x, 0)

vn+1(x, t) = L−1
t

(
−∂3vn(x, t)

∂x3 − 3Cn − 3Gn + 3Hn − 3
∂vn(x, t)

∂x

)
, n ≥ 0 (5.8)

Using known u0(x, t) and v0(x, t), all the remaining components un(x, t) and
vn(x, t), n > 0 can be completely determined such that each terms are determined by
using the previous term. From Eqs. (5.7) and (5.8) with Eqs. (4.13c) and (4.13d), we
determine the individual components of the decomposition series as

u0 = tanh(x)

v0 = 1 − 2 tanh2(x)

u1 = −t sech2(x)

v1 = 4t sech2(x) tanh(x)

u2 = −t2 sech2(x) tanh(x)

v2 = 2t2(−2 + cosh(2x)) sech4(x)
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u3 = −1

3
t3(−2 + cosh(2x)) sech4(x)

v3 = 2

3
t3 sech5(x)(−11 sinh(x) + sinh(3x))

and so on, the other components of the decomposition series (5.5) and (5.6) can be
determined in a similar way.

Substituting these u0, u1, u2, . . . and v0, v1, v2, . . . in Eqs. (5.5) and (5.6), respec-
tively gives the ADM solutions for u(x, t) and v(x, t) in a series form

u(x, t) = tanh(x) − t sech2(x) − t2 sech2(x) tanh(x) − 1

3
t3(−2 + cosh(2x)) sech4(x) + · · ·

(5.9)
v(x, t) = 1 − 2 tanh2(x) + 4t sech2(x) tanh(x) + 2t2(−2 + cosh(2x)) sech4(x)

+2

3
t3 sech5(x)(−11 sinh(x) + sinh(3x)) + · · · (5.10)

Using Taylor series, we obtain the closed form solutions

u(x, t) = tanh(x − t) (5.11)

v(x, t) = 1 − 2 tanh2(x − t) (5.12)

With initial conditions (4.13c) and (4.13d), the solitary wave solutions of Eqs. (5.1)
and (5.2) are of kink-type for u(x, t) and bell-type for v(x, t) which agree to some
extent with the results constructed by Fan [9]. According to the learned author Fan
[9], the solitary wave solutions of Eqs. (5.1) and (5.2) are kink-type for u(x, t) =
tanh

(
x + t

2

)
and bell-type for v(x, t) = 3

2 − 2 tanh2
(
x + t

2

)
, where k = 1 and

λ = −1. There is definitely a mistake to be reckoned with and should be taken into
account for further study. Since using the same parameters k = 1 and λ = −1, the
solitary wave solutions of Eqs. (5.1) and (5.2) have been obtained as in Eqs. (5.11)
and (5.12).

In the present analysis, the two methods Coupled Fractional Reduced Differential
Transform and Adomian decomposition method confirm the justification and correct-
ness of the solutions obtained in Eqs. (5.11) and (5.12).

6 Conclusion

In this paper, a new approximate numerical technique Coupled Fractional Reduced dif-
ferential transform has been applied for solving nonlinear fractional partial differential
equations. The proposed method is only well suited for coupled fractional linear and
nonlinear differential equations. In comparison to other analytical methods, the present
method is an efficient and simple tool to determine approximate solution of nonlin-
ear coupled fractional partial differential equations. The obtained results demonstrate
the reliability of the proposed algorithm and its promising applicability to nonlinear
coupled fractional evolution equations. It also exhibits that the proposed method is
very efficient and powerful technique in finding the solutions of the nonlinear coupled
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time fractional differential equations. The main advantage of the proposed method is
that it requires less amount of computational overhead in comparison to other numer-
ical and analytical approximate methods and consequently introduces a significant
improvement in solving coupled fractional nonlinear equations over existing methods
available in open literature. The application of the proposed method for the solutions
of time fractional coupled modified KdV equations satisfactorily justifies its simplicity
and efficiency. Moreover, in case of integer order coupled modified KdV equations,
the obtained results have been verified by the Adomian decomposition method. This
investigation leads to the conclusion that soliton solutions for integer order coupled
modified KdV equations have been wrongly reported by the reverend author Fan [9].
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